

VivaDiaq SARS-CoV-2 Ag Rapid Test

English

REF VCD05-01-011/ VCD05-01-012/ VCD05-01-013

PRINCIPLE AND INTENDED USE

VivaDiag[™] SARS-CoV-2 Ag Rapid Test is for the rapid, gualitative detection of the nucleocapsid protein antigen from SARS-CoV-2 in human nasal swab, oropharyngeal swab or nasopharyngeal swab specimen. The test is for in vitro diagnostic use only. For professional use only. It is intended for clinical laboratories and healthcare professional use only for point-of-care testing. Not for at-home testing.

VivaDiagTM SARS-CoV-2 Ag Rapid Test is based on immunoassay technology. Each test device has one line of anti-SARS-CoV-2 monoclonal antibody on the detection line (T line) and one line of anti-mouse IgG polyclonal antibody on the quality control line (C line). When extracted specimen is added to the specimen well, it will react with the labeled antibody to form a complex, the mixture then migrates through the membrane by capillary action and interacts with the coated anti-SARS-CoV-2 monoclonal antibody on the detection line. If the specimen contains SARS-CoV-2 antigen, the detection line will appear purplish-red indicating the SARS-CoV-2 antigen is positive. Otherwise, the test result will be negative. The test device also contains a quality control line C which should appear purplish-red for all valid tests. If the quality control line C does not appear, the test result will be invalid even if the detection line appears.

COMPOSITION

Each test kit contains test devices, sealed pouches (prefilled with 300 µL extraction solution). extraction tubes, extraction tube tips, tube stand, sterile swabs and package insert.

Materials required but not provided: timer.

STORAGE AND HANDLING

- Store the test kit in a cool, dry place between 2-30°C. Keep away from light. Exposure to temperature and / or humidity outside the specified conditions may cause inaccurate results
- Do not freeze or refrigerate. Use the test kit at temperatures between 15-30°C.
- Use the test kit between 10-90% humidity.

• Do not use the test kit beyond the expiration date (printed on the foil pouch and box). Note: All expiration dates are printed in Year-Month-Day format. 2022-06-18 indicates June18, 2022.

WARNINGS, PRECAUTIONS AND LIMITATIONS

- · Results from SARS-CoV-2 antigen testing should not be used as the sole basis to diagnose or exclude SARS-CoV-2 infection or to inform infection status.
- Negative results do not rule out SARS-CoV-2 infection, particularly in those who have been in contact with the virus. Follow-up testing with a molecular diagnostic and / or CT should be considered to rule out infection in these individuals.
- · Positive results may be due to present infection with SARS-coronavirus strains, see "cross-reactivity" for details. Follow-up testing with a molecular diagnostic and / or CT should be considered to confirm the testing result.
- · For in vitro diagnostic use only.
- Not for at-home testing
- Further molecular diagnostic and / or CT is recommended to identify the actual physical situation
- Do not open the foil pouch of the test device exposing it to the ambient environment until the test device is ready for immediate use.
- · Do not use any damaged test device or material.
- Do not reuse the test device.
- Handle extraction solution with caution, do not contact with eyes or skin. If spilled on eyes or skin, wash thoroughly with water.
- Do not use test kit beyond the expiration date.
- · Specific training or guidance is recommended if operators are not experienced with specimen collection and handling procedures.
- · Only use nasal swab, oropharyngeal swab or nasopharyngeal swab as specimen. Follow the package insert to obtain accurate results.
- · Wear protective gears such as laboratory coats, disposable gloves, and eye protection when specimens are collected and evaluated.
- · Wash hands thoroughly after handling.
- There is no reduction in sensitivity in the VivaDiag™ SARS-CoV-2 Ag Rapid Test compared to recombinant proteins of the India variant (B.1.617.2), the Great Britain variant (B.1.1.7), the United States variant (B.1.429/B.1.427) the Brazilian variant (P.1) and the South African variant (B.1.351).

 All parts of kit are considered biohazardous and can potentially transmit infectious diseases from blood borne pathogens, even after you have performed cleaning and disinfection. Follow proper precautions and all local regulations when disposing of the used test kits.

SPECIMEN COLLECTION AND HANDLING

1) Specimen collection

Nasal swab specimen (recommended)

It is important to obtain as much secretion as possible. Insert the sterile swab into one nostril. The swab tip should be inserted up to 2.5 cm (1 inch) from the edge of the nostril. Roll the swab 5 times along the mucosa inside the nostril to ensure that both mucus and cells are collected. Repeat this process for the other nostril to ensure that an adequate specimen is collected from both nasal cavities (use the same swab).

Oropharyngeal swab specimen (optional)

It is important to obtain as much secretion as possible. Insert the sterile swab into throat that presents the most secretion from the red area of the throat wall and maxillary tonsils to collect throat swab specimen. Rub the bilateral throat tonsils and throat wall moderately to obtain the specimen. Please do not touch the tongue when remove the swab.

Nasopharvngeal swab specimen (optional)

It is important to obtain as much secretion as possible. Insert the sterile swab into the nostril that presents the most secretion under visual inspection. Keep the swab near the septum floor of the nose while gently pushing the swab into the posterior nasopharynx. Rotate the swab 5 times then remove it from the nasopharvnx.

2) Specimen handling

Freshly collected specimens should be tested as soon as possible. It is essential that correct specimen collection and preparation methods are followed.

TEST PROCEDURE

Allow the Test Devices and Extraction Solution to equilibrate to 15-30°C prior to testing.

1. Hold the sealed pouch vertically and let all extraction solution flow into the bulb. Break the tip and squeeze the bulb to dispense all extraction solution into the extraction tube.

- Collect specimen refer to Specimen Collection.
- 3. Insert the swab with collected specimen into the extraction tube filled with extraction solution. Roll the swab 5 times while pressing the head against the bottom and side of the extraction tube. Remove the swab while squeezing the sides of the tube to extract the liquid from the swab. Try to release as much liquid as possible. Dispose the used swab as a biohazard waste.

5. Take out a test device from sealed foil pouch and put it on a clean and level surface. 6. Apply 3 drops (about 60 µL) of the extracted specimen into the specimen well. Please avoid bubbles during applying.

7. Read the test result at 15 minutes. Don't read the result after 20 minutes.

Note

- Do not interchange or mix extraction solution from different lots.
- Handle extraction solution with caution, do not contact with eyes or skin. If spilled on eyes or skin, wash thoroughly with water.
- · Please follow local regulations to handle the used materials.

INTERPRETATION OF TEST RESULTS

1. Positive Result:

Both the quality control line C and the detection line T appear.

2. Negative Result:

Only the quality control line C appears, with no other line appearing on the detection line. 3. Invalid Result:

Quality control line C fails to appear indicating the test is invalid, no matter if the detection line appears or not. Collect a new specimen and perform another test with a new test device

control line (C) appear purplish-red in the detection area.

ears in the detection area

Invalid: No purplish-red quality control line (C) appears in the detection area no matter the detection (T) line is colored or not.

QUALITY CONTROL

Internal procedural controls are included in the test. A colored line appearing in the control region (C) is the internal procedural control. It confirms sufficient specimen volume and correct procedural technique. Control standards are not supplied with this kit; however, it is recommended that positive and negative controls be tested as a good laboratory practice to confirm the test procedure and to verify proper test performance.

PERFORMANCE

1. Limit of Detection

The LOD for the VivaDiagTM SARS-CoV-2 Ag Rapid Test was established using dilutions of an inactivated virus culture. The starting material was supplied at a concentration of 8.65 x 10⁶ TCID₅₀/mL. Studies were designed to estimate the LOD of the assay using nasal swab specimens, the starting material was spiked into a volume of pooled human nasal matrix obtained from healthy donors and confirmed negative for SARS-CoV-2 to obtain a series of different concentrations

SARS-CoV-2 Titer				8.65	10 ⁶ TCII	D ₅₀ /mL			
Dilution	1/100	1/200	1/400	1/800	1/1600	1/3200	1/6400	1/12800	1/25600

Concentration in Dilution tested (TCID50/mL)	8.65x 10 ⁴	4.33x 10 ⁴	2.16x 10 ⁴	1.08x 10 ⁴	5.41x 10 ³	2.70x 10 ³	1.35x 10 ³	6.75x 10 ²	3.38x 10 ²
Detection rates of 5 replicates	100% (5/5)	100% (5/5)	100% (5/5)	100% (5/5)	100% (5/5)	100% (5/5)	100% (5/5)	100% (5/5)	80% (4/5)
Detection rates of 20 replicates near cut-off	NA	NA	NA	NA	NA	100% (20/20)	100% (20/20)	95% (19/20)	75% (15/20)
Lowest Concentration with Uniform Positivity per Analyte	6.75x10 ² TCID₅₀/mL								
Limit of detection (LoD) per inactivated Virus Culture	6.75x10 ² TCID ₅₀ /mL								

2. Clinical Sensitivity/Clinical Specificity

A total of 497 specimens were tested using the VivaDiag[™] SARS-CoV-2 Ag Rapid Test. These specimens were obtained by nasal swabs from symptomatic patients. The performance of the VivaDiag[™] SARS-CoV-2 Ag Rapid Test was compared to a commerialized molecular assay.

Table Summary of sensitivity/specificity of the VivaDiag $^{\rm TM}$ SARS-CoV-2 Ag Rapid Test compared to PCR.

VivaDiag™		PCR					
SARS-CoV-2 Ag Rapid Test	Positive	Negative	Total				
Positive	60	0	60				
Negative	6	431	437				
Total	66	431	497				
Sensitivity	90.90% (60/66, 95%Cl, 81.55%~95.77%)						
Specificity	100% (431/431, 95%Cl, 99.12%~100%)						
Accuracy	98.79% (491/497, 95%Cl, 97.39%~99.45%)						

The VivaDiag $^{\rm TM}$ SARS-CoV-2 Ag Rapid Test showed a clinical sensitivity of 90.90%.

The VivaDiag[™] SARS-CoV-2 Ag Rapid Test showed a clinical specificity of 100%.

The VivaDiagTM SARS-CoV-2 Ag Rapid Test showed a clinical accuracy of 98.79%.

CROSS-REACTIVITY

1. Cross-Reactivity: there was no cross-reaction with potential cross-reactive substances except SARS-coronavirus.

1) cross-reaction with SARS-coronavirus.

Virus	Strain	Concentration
SARS-coronavirus	Urbani	1XI0 ⁶ PFU/mL

2) no cross-reaction with potential cross-reactive substances

Virus/Bacteria/ Parasite	Strain	Concentration Range
	H1N1	
Influenza A	H3N2	
Innuenza A	H5N1	
	H7N9	
Influenza B	NA	
	Type1	
	Type2	
Adenovirus	Туре3	1X10~1X10 1CID ₅₀ /mL
Adenovirus	Type5	
	Type7	
	Type55	
Respiratory	Туре А	
syncytial virus	Туре В	
Coronavirus	229E	

	OC43	
	NL63	
MERS-Coronavirus	Florida/USA-2_Saudi Arabia.2014	
	Type1	
Parainfluenza	Type2	
virus	Туре3	
	Type4	
Rhinovirus A16	N/A	
Legionella	Bloomington-2	
pneumophila	82A3105	
	К	
	Erdman	
Mycobacterium tuberculosis	HN878	
luberculosis	CDC1551	
	H37Rv	
	475298 [Maryland(D1)6B-17]	1X10 ⁵ cells/mL
Streptococcus	178[Poland23F-16]	Cella/IIIE
pneumonia	262[CIP 104340]	
	Slovakia14-10 [29055]	
Streptococcus pyrogens	Typing stain T1	
	Mutant22	
Mycoplasma pneumoniae	FH strain of Eaton Agent	
prioditionale	M129-B7	7

2. Endogenous/Exogenous Interference Substances Studies: there was no interference

for potential interfering substances listed below.

Potential	Interfering Substance	Concentration	Results	Viral Strain Culture (In multiples of LoD)	Results
	Zanamivir (Infuenza)	5mg/mL	NEG		POS
	Oseltamivir (Infuenza)	10mg/mL	NEG		POS
	Artemether-lumefantrine (Malaria)	50uM	NEG		POS
Anti-viral drugs	Dorxoycline hyclate (Malaria)	70uM	NEG		POS
	Quinine (Malaria) 150uM NEG		POS		
	Lamivudine (Retroviral medication)	1mg/mL	NEG	SARS-Co V-2	POS
	Ribavirin (HCV)	1mg/mL	NEG	cultured	POS
	Daclatasvir (HCV)	1mg/mL	NEG	virus 1/12800	POS
	Mucin: bovine submaxillary gland,type I-S	100ug/mL	NEG	dilution (6.75X10	POS
Respiratory Specimens	Blood (human), EDTA anticoagulated	5% (v/v)	NEG	TCID ₅₀ /m L)	POS
	Biotin	100ug/mL	NEG		POS
	Neo-Synephrine (Phenylephrine)	10% (v/v)	NEG		POS
Nasal sprays or drops	Afrin Nasal Spray (Oxymetazoline)	10% (v/v)	NEG		POS
	Saline Nasal Spray	10% (v/v)	NEG		POS
Homeopathic allergy relief	Homeopathic Zicam Allergy Relief Nasal Gel	5% (v/v)	NEG		POS

medicine	Sodium Cromoglycate	20mg/mL	NEG	POS
	Olopatadine Hydrochloride	10mg/mL	NEG	POS
	Acetaminophen	199uM	NEG	POS
Anti-inflammato ry medication	Acetylsalicylic acid	3.62mM	NEG	POS
.,	Ibuprofen	2.425mM	NEG	POS
	Mupirocin	10mg/mL	NEG	POS
Antibiotic	Tobramycin	5ug/mL	NEG	POS
Antibiotic	Erythromycin	81.6uM	NEG	POS
	Ciprofloxacin	30.2uM	NEG	POS

3. High-dose Hook Effect: cultured SARS-CoV-2 virus was spiked into specimen. No hook-effect was observed at $8.65 \times 10^{6}\, TCID_{50}/mL$ of cultured SARS-COV-2 virus.

Specimen Type	Dilution	Concentration (TCID ₅₀ /ml)	Result
	NEAT	8.65X10 ⁶	POS
	1/10	8.65X10 ⁵	POS
	1/100	8.65X10 ⁴	POS
	1/200	4.33x10 ⁴	POS
	1/400	2.16x10 ⁴	POS
SARS-CoV-2	1/800	1.08x10 ⁴	POS
Inactivated virus cultured	1/1600	5.41X10 ³	POS
	1/3200	2.7x10 ³	POS
	1/6400	1.35x10 ³	POS
	1/12800	6.75x10 ²	POS
	1/25600	3.38x10 ²	NEG

POS: positive NEG: negative

REFERENCES

1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 [J]. Nature Microbiology, 5, 536-544 (2020).

 Perlman, S. Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis.Nature Reviews Microbiology 7, 439-450, doi: 10.1038/nrmicro2147 (2009).
Lauer SA, Grantz KH, Bi Q, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020; 172(9): 577-582. doi: 10.7326/M20-0504.

	INDEX OF SYMBOLS							
ĺ	Consult instructions for use	\square	Use by	Σ	Contains sufficient for <n> tests</n>			
IVD	For <i>in vitro</i> diagnostic use only	LOT	Lot number	REF	Catalog number			
2°C	Storage temperature limitations		Manufacturer	\otimes	Do not reuse			
EC REP	Authorized Representativ	ve						

Number: 1604014804 Effective date: 2021-08-03